

LESSON PLAN

Name of Faculty :	Manoj Kumar Jha (Theory/ Practical)
Discipline :	B. Tech I st Year
Semester :	2 nd
Subject :	Physics II /HAS-101C
Lesson Plan Duration :	15 weeks (from January,2018 to April,2018)

Work load(Lecture/ Practical) per week (in hours): Lectures-04, Practicals-02

Week	Theory		Practical	
	Lecture Day	Topic (including assignment/test)	Practical Day (2 lectures each day)	Торіс
	1	Section-Unit-1 Crystal structure: Introduction, Classification, Unit cell		
1 st	2	Translation vector, Bravais lattice.	1 st	To find the high resistance by substitution method
	3	Co-ordination number, Lattice points/Unit cell,		
	4	Calculation of lattice constant, Lattice planes.		
2 nd	5	Millar indices, Spacing between lattice planes.	2 nd	To study the characteristics of a Photo-Voltaic (solar cell) and to find the fill factor.
	6	Bonding in solids.		
	7	X-rays diffraction method, Laue method		
	8	Powder method /Assignment- I		
3 rd	9	Defect in solids, Points defects.	3 rd	To find the ionization potential of mercury vapour filled in thyratron valve.
	10	Schottky defects		
	11	Frenkel defects.		
	12	Simple Crystal structure of NaCl and diamond		
4 th	13	QuantumPhysics:Difficulties with classical physics.	4 th	To plot graph showing

	14	Introduction of quantum mechanics- simple concepts.		the variation of magnetic field with distance along the axis
	15	Black body radiations.		of a circular coil carrying
	16	Discovery of planks constants, planks radiation law.		from it the radius of the coil.
	17	Group velocity and phase velocity and their relationship.		
	18	de-Broglie hypothesis and matter wave.	5 th	To plot forward & reverse bias characteristics of PN JUNCTION DIODE.
5 th	19	Schrödinger wave equation-Time dependent.		
	20	Schrödinger wave equation-time independent		
6 th	21	Application of Schrödinger Wave equation-particle in a box.		
	22	Elementary idea of quantum statistics- Bose Einstein and Fermi- Dirac statistics.	6 th	To determine the energy band gap of a semiconductor (Germanium) using four
	23	Unit-2Nanomaterialsandapplications:Introduction of nanoscience		probe method.
	24	Synthesis of nano particles		
	25	Techniques-ball milling		To find the value of
	26	Sputtering		Planck's constant by
7 th	27	Plasma synthesis	7 th	using the photoelectric
	28	Properties of nano particles- mechanical		cell.
8 th	29	Optical properties		To study the Hall effect
	30	Magnetic properties		in semiconductors and
	31	Electronic properties		determine-
	32	Introduction to carbon nanotubes./Test-I	8 th	 a) Hall coefficient and hall voltage b) No of charge carriers / unit volume c) Mobility and Hall angle
9 th	33	FreeElectronTheory:Elementofclassicalfreeelectron	9 th	To obtain hysteresis

	34 35	theory and its limitations.Drude's theory of conduction of electrons.Quantum theory of free electron, Density of states.Fermi level, Fermi-Dirac distribution for the states.		loop (B – H curve) for a given ferromagnetic material on a CRO and to find the loss of energy due to hysteresis.
	36	Tunction		
	37	equation./Assignment-II		
10 th	38	Unit-3 Band Theory of Solids: Concept of band theory, classification of solids and its properties.	10 th	To find the value of e/m for electrons by helical method.
	39	Kronig-Penny model, E-K diagram.		
	40	Concept of effective mass and holes.		
11 th	41	Thermionic emission-Richardson's equation.	11 th	Physics lab –II/Test-1 (Theory part)
	42	Fermi energy in intrinsic semiconductor and its variation with temperature.		
	43	Fermi energy in extrinsic semiconductor-p type and n type.		
	44	Hall effect and its applications.		
12 th	45	PhotoconductivityandPhotovoltaic's:Photoconductivity ininsulating crystals and its variationwith illumination.		
	46	Effect of traps, Effect of impurity on photoconductivity	12 th	Physics lab-II/Test- 2(Experimental performance)
	47	Application of photo conductivity.		
	48	Photovoltaic Cell process in semiconductor.		
13 th	49	Solar Cell and characteristics./Assignment-III	13 th	Physics lab-II/Test-3 (Theory part)

	50	Unit-4 Magnetic Properties of Solids: Atomic magnetic moments, Orbital diamagnetism.		
	51	Classification of magnetic substances- dia, para and ferro./ Test-II		
	52	Classical theory of diamagnetism,		
14 th	53	Classical theory of Paramagnetism, Langvin's theory.	14 th	Physics lab-II/Test-4 (Experimental Performance)
	54	Modifications by Wiess inlangevin' theory		
	55	Ferromagnetism-Molecular field and domain.		
	56	Superconducity-Introduction (Experimental survey)		
15 th	57	Meissner Effect	15 th	Physics lab-II / Project work
	58	London equations		
	59	Hard and soft superconductor		
	60	Elements of BCS theory and applications of superconductors/Assignment-IV		